D-A269 671
A ATV EN

Learning by Experimentation:
Incremental Refinement of
Incomplete Planning Domains

Yolanda Gil
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90292
April 1993
ISI/RR-93-338

INFORMATION

SCIENCES .
INSTITUTE ' AR
4676 Adnuralty Wav/Marina Jel Rev/Caintornag Vol -mes!

dn) ays/i VRN A
Q@ T o=
&7 €. -

Learning by Experimentation:
Incremental Refinement of
Incomplete Planning Domains

Yolanda Gil
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90292

April 1993
ISI/RR-93-338
Acce i.: For
NYIS CR &l % _
DTIC AU _L . ";;:;‘1?:. Ff;;"" i :;:_ef\y
U a U.I.-C.‘d J :: 3 Y ; ‘.';'\}
J o thesbon e g’i‘u L
i ol R e T K o
b !;; ;.;3 e L |j} ?:'; ‘
By U wraes e vy £ oAt T '“-3 N o ;‘: "‘
D ttbutfm[R “é“ & g 55
¥ ki .-:';! ﬁ.v._-“ m N
Availability Codes De g -
Avail and/or
ot Special
\A-l L
bTic »
T:':"““,-fw
~-CTED g 93-2
., . I -~

!W//Illlll/l/l//l&'lfll i IIHI I

REPORT DOCUMENTATION PAGE OMB NG, 07060108

Pubtic npomns burden for this collection of inlormmon [3 sstimated to sversge 1 hour per responss. including the time 1or reviewing instructions, sesiching exiing data

sources, gathe and maintaining the data o nd pisting and reviewing the coltection of informstion. Send comments rding this burden estimated or any

othar aspect of this coltaction of information, Includin sstings for reducing this burden 1o Washington Headquartsrs Services, Dlrectorate for information Operstions

;‘n.d.:wm. 121 go .ggonon Davis highway, Sulte 12 A inglon, VA 22202-4302, and to the Office of managemaent snd Budget, Paperwork Reduction Project (0704-0138),
on, OC .

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1993 Rescarch Report
~4. TITLE AND SUBTILE §. FUNDING NUMBERS
Learning by Experimentation: Incremental Refinement of Incomplete Plan- | F33615-90-C-1465
ing Domains
6. AUTHOR(S) .
Yolanda Gil
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON
. REPORT NUMBER
USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY RR-338
MARINA DEL REY, CA 90292-6695 N
9. S'PON.SORSNGIMON”ORING AGE.NCY NAMES(S} AND ADDRESS(ES) 10. SPONSORING/MONITORING
Avionics Laboratory, Wright Research and Development Center AGENCY REPORT NUMBER
Aeronautical Systems Division, U.S. Air Force, Wright Patterson
Wright-Patterson AFB, Ohio 45433
11. SUPPLEMENTARY NOTES
12A. DISTRIBUTICN/AVAILABILITY STATEMENT 12R DISTHBUTION CODE

UNCLASSIFIED/UNLIMITED
13. ABSTRACT (Maximum 200 words)

Building a knowledge base requires iterative refinement to correct imperfections that keep lurking after each new version of the
system. This paper concentrates on the automatic refincment of incomplete domain modcls for planning systems, presenting both
a methodology for addressing the problem and empirical results obtained from an implemeniced system n several domains when
initial domain knowledge is up S0% incomplete. Planing knowlcdge may he refined automatically through direct interaction with
their environment. Missing conditions cause unreliable predictions of action outcomes. Missing effects cause unreliable predic-
tions of facts about the state. The paper shows that contrary to popular belicf, missing infonmation is not nccessarily associated
with execution failures. We present approach based on continues and sclective interaction with the environment that pinpoints the
type of fault in the domain knowledge that causes any unexpected behavior of the environinent, and resorts to experimentation
when additional information is needed to correct fault. Qur approach has been implemented in EXPO, a system that uses PROD-
IGY as a baseline planner and improves its domain knowledge in several domains. The empirical results presented show that
EXPQ dramatically improves its prediction accuracy and reduces the amount of unreliable action outcomes.

14. SUBJECY TERMS 15. NUMBER OF PAGES
planning, learning, experimentation, theory, refinement, incomplete theories 11

16. PRICE CODE

17. SECURITY CLASSIFICTION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORY OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
TSN 7540-071-280-5500 tandard Torm 298 (Rev. 2-39)

Prescribed by ANS! Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. it is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningfu! 2nd complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C -Contract PR - Project

G - Grant TA -Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)

and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11, Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of ...; To be
published in... When a report is revised, include

a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Avaiiability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, “Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA -See Handbook NHB 2200.2.

NTIS -Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS oniy).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standarc T ~rm 206 Back (Rev. 2 89"

Learning by Experimentation: Incremental
Refinement of Incomplete Planning Domains

Yolanda Gil
Information Sciences Institute. USC
4676 Admiralty Way
Marina del Rey, CA 90292
(310) 822-1511
gil@isi.edu

Abstract

Building a knowledge base requires iterative refinement to correct imperfections
that keep lurking after each new version of the system. This paper concentrates on the
automatic refinement of incomplete domain models for planning systems. presenting
both a methodology for addressing the problem and empirical results obtained from an
implemented system in several domains when initial domain knowledge is up to 50%
incomplete. Planning knowledge may be refined automatically through direct interac-
tion with their environment. Missing conditions cause unreliable predictions of action
outcomes. Missing effects cause unreliable predictions of facts about the state. The
paper shows that. contrary to popular belief, missing information is not necessarily
associated with execution failures. We present a practical approach based on continu-
ous and selective interaction with the environment that pinpoints the type of fault in
the domain knowledge that causes any unexpected behavior of the environment. and
resorts to experimentation when additional inforn.ation is needed to correct the fauit.
Our approach has been implemented in EXPO. a system that uses PRODIGY as a
baseline planner and improves its domain knowledge in several domains. The empirical
results presented show that EXPO dramatically improves its prediction accuracy and
reduces the amount of unreliable action outcomes.

1 Introduction

Building a knowledge base is a process that requires iteration to correct ¢
rors that keep lurking after each new version of the system. Secveral ty;
of imperfections can appear simultaneously in any type of domain theory.
cluding incompleteness. incorrectness, and intractability [Mitchell et al., * 36:
Rajamoney and DeJong, 1987; Huffman et al., 1992]. In an EBL system, for
example, the rules of the theory are used to compose explanations and an
imperfect theory may greatly impair the system’s ability to build those ex-
planations. In fact, EBL systems are very brittle with respect to errors in
the domain theory, and a lot of the research in EBL concentrates on either
correcting them or making the system more robust {Danyluk. 1991: Hall. 1938:
Rajamoney, 1988]. There is a well developed framework to classify these errors
and understand how they affect the explanation process [Mitchell et al., 1986:
Rajamoney and DeJong, 1987].

In a planning system, the inaccuracies of the knowledge base may rend prob-
lems unsolvable or produce plans that yield unsuccessful executions. However,
there is not a good basis for understanding in which particular ways the dif-
ferent types of faults in a domain theory affect the planner’s performance.
Exploring this issue should provide a good framework for understanding and
evaluating systems that learn planning domain knowledge. In this paper. we
concentrate on the problematic of missing domain knowledge, which is tech-
nically known as incompleteness. Known operators may be missing precon-
ditions and/or effects, or entire operators may be absent from the domain
model. We describe the limitations of the capabilities of a planner in terms
of the types of incompleteness of its domain knowledge. The imperfections of
the domain knowledge have been closely related to planning and/or execution
failures [Hammond, 1986; Huffman et al.. 1992}, but we show in our discussion
that this 1s not necessarily the case.

The rest of this paper presents a summary and empirical results of our work

on autonomous refinement of incomplete planning domains {Carbonell and Gil.
1990; Gil. 1991a; Gil, 1992). Learning is selective and task-directed: it is trig-
gered only when the missing knowledge is needed to achieve the task at hand.
Our approach is based on continuous and selective interaction with the envi-
ronment that leads to identifying the tvpe of fault in the domain knowledge
that causes any unexpected behavior of the environment. and resorts to ex-
perimentation when additional information is needed to correct the fault. The
new knowledge learned by experimentation is incorporated into the domain
and is immediately available to the planner. The planner in turn provides
a performance element to measure any improvements in the knowledge base.
This is a closed-loop integration of planning and learning by experimentation.
Research in the area of acquiring action models is mostly subsyvmbolic [Ma-
hadevan and Connell, 1992; Maes, 1991]. An important component of our
approach is the ability to design experiments to gather additional information
that is not available to the learner and yet is needed to acquire the miss-
ing knowledge. Experimentation is vital for effective learning and is a very
powerful tool to refine scientific theories [Cheng, 1990; Rajamoney, 1988], but
current research on learning planning knowledge from the environment does
not address this issue directly [Shen, 1989; Kedar et al., 1991].

The approach has been implemented in a system called EXPO. EXPO’s
underlying planning architecture is the PRODIGY system [Minton et al.. 1989:
Carbonell et al., 1991] which provides a robust, expressive, and efficient plan-
ner. The examples included in this paper are based on a robot planning domain
[Gil, 1992], but results are also shown for a complex process planning domain
(Gil, 1991b].

The paper is organized as follows. Section 2 presents a taxonomy of how in-
complete domain knowledge can affect the performance of a planning system.
Section 3 describes our approach to the automatic refinement of incomplete

planning domains and its implemeatation in EXPO. Finally, the empirical

results presented in Section 4 show that EXPO dramatically improves its pre-

diction accuracy and reduces the amount of unreliable action outcomes.
2 Planning with Incomplete Models

This section groups the effects of incompleteness in planning domains in three
categories: unreliable action outcomes, unreliable predicate beliefs, and unre-

liable coverage of the search space.

2.1 Unreliable Action Outcomes

Suppose that a planner is given the following incomplete operator:

(OPEN’
(params (<door>))
(preconds
(and
(is-door <door>)
;the condition {(unlocked <door>)} is missing
(next-to robot <door>)
(dr-closed <door>)
))
(effects (
(del (dr-closed <door>))
(add (dr-open <doorx>))
M)

OPEN’ is incomplete: it is missing the condition (unlocked <door>). If the
planner uses OPEN’ to open an unlocked door. the execution will be successful.
If the planner uses OPEN" to open a door that happens to be locked, the action
will have no effect. In this case, the planner made the wrong prediction of the
outcome of the action execution: that the door would be open. So if the
preconditions of an operator are incomplete, the planner’s predictions of the
operator's outcome are unreliable, because the desired effects of the operator
may or may not be obtained. The success or failure of the action’s execution
is thus beyond the planner’s control, and it depends solely on the chances that
the unknown conditions happen to be true. Notice that an execution failure
is not necessarily obtained. since the missing conditions may happen to be

satisfied.

——

' Missing conditions of context-dependent effects also cause unreliable action

outcomes, since the planner cannot predict when the effect will take place.

2.2 Unreliable Predicate Beliefs

] Consider the following incomplete operator:

(PUTDOWN-NEXT-TQ?
(params (<ob>))
(preconds

(and (holding <ob>)

(next-to robot <other-ob>)))
! (effects
({add (arm-empty))
;the effect (del (holding <ob>)) is missing
(add (next-to <ob> <another-ob)))))

If the planner uses this action to put down an object, the action’s execu-
tion will be reliable: the desired effects of the operator will be obtained. The
planner will only notice the change in the status of holding at this pomt if
it is monitoring the environment beyond the known effects. Although it may

, be possible in some applications [Kedar et al., 1991; Shen. 1989}, continu-
ously moenitoring the status of all the known facts is highly impractical in real
domains, and furthermore it is not very cost-effective.

However, the planner may notice this change in the future. Suppose that it

continues executing actions successfully. Now it wants to put the same object
down again. Since 1t believes to be still hoiding Jie object it considers this
operator to put the object down. It is now that the planner notices that the
truth value of the predicate (holding obj) changed inadvertently. It is the
truth value of a predicate that is unreliable, not the action’s outcome. The
action of putting down is reliable since the planner can predict the outcome
of the action for any object that it is holding.

Notice that although the planner’s prediction of the truth value of the pred-
icate failed. in this case the planner does not obtain an execution failure. A
missing effect is often mistakenly associated with an execution failure [Ham-

mond, 1986; Huffman ¢ al.. 1992], probably because of its negative implica-

tion: the planner needs to patch the plan and achieve the desired value of the
predicate. In our example, holding needs to be reachieved. However. this is
not necessarily the case. Incomplete effects may also cause the elimination of
unnecessary subplans that achieve a goal that is already satisfied in the world.
as we illustrate in the following example.

Consider the following operator:

(PUTDOWN-NEXT-TO’

(params (<ob>))
(preconds

(and (holding <ob>)

{next-to robot <other-ob>)))

(effects

((add (arm-empty))

(del (holding <ob>)))))

;the effect (add (next-to <ob> <another-ob)) is missing

Now suppose that the goal is not to hold a key and to have it next to a cer-
tain box. The planner uses PUTDOWN-NEXT-TO" to achieve not holding
the key, and then PUSH-OBJ to put the key next to the box. The planner is
unaware that PUTDOWN-NEXT-TO” actually achieves both subgoals. and
that PUSH-OBJ is thus an unnecessary subplan (provided that the subplan is
not needed to achieve other goals). When the planner notices that the truth
value of next-to was changed inadvertently, it can eliminate the unneces-
sary subplan. In this case. the unreliable prediction did not have any negative

implication for the planner: it even saved some extra work.

2.3 Unreliable Coverage of Search Space

The two previous sections describe how missing conditions and effects case
undesirable behavior during plan exccution. Incomplete domains may also
cause unreliable coverage of the search space. Notice that this would cause
complications at problem solving time. not execution time,

Consider the case of a missing operator. If there are no alternative operators
to use during the search. then problems may have no solution {even though

they would be solvable if the complete domain were available to the planner).

-

For example. if Gt £N is missing from the domain then no other operator would
achieve the _oal of opening a door. which would cause all the problems that
include this subgoal to have no solution. The same type of behavior occurs if
he missing effects of an operator were to be used for subgoaling. Consider for
example that the domain included an operator OPEN that is missing the effect
(add (dr-open <door>)). Any problem that causes subgoaling on opening
a door would have no solution.

Notice that in the previous section the missing etfects caused different com-
plications. They did not preciude the operator from being part of a plan.
since some other known elffect of the operator allowed its use for subgoaling.
So as long as some primary ctfect of each operator i1s known to the planner,
the missing effects could be detected as described in the previous section.

Another case of incompleteness occurs when a state is missing facts about
the world. For example, consider a state containing a description of a door
Door45 that connects Room4 and RoomS5. The state does not contain infor-
mation about the door being either locked or unlocked. In this case. some
operator’s preconditions cannot be matched in the state. For example, OPEN
has a precondition that the door must be unlocked. and the planner cannot
consider using it for opening Door45. So when facts are missing from the state.
the applicability of operators is restricted to the known facts aud thus it may
not be possible to explore parts of the search space until more information

becomes available.

2.4 Summary

Figure 1 summarizes the taxonomy of limitations of a planner caused by incom-
plete domain knowledge. Missing conditions cause action exeention failures.
If the missing condition is identified. a plan is needed to achieve it before the
action can be exeented successfully Missing side effects may cause either un-

necessary subplans or additional planning, b they do not canse execution

L what 1s missing Lwhat 1t may cause] when noficed ! how noticed

preconditions action execution failure | plan execution unrenable action outcomes |
conditions of followed by ;
context-dependent effects | plan repair i
effects unnecessary subplans plan execution unreliable predicate beliefs :
not needed for subgoaling | or plan repair
eflects unreliable coverage problem solving | problems without solution

t needed for subgoaling of search space
operators

+ predicate beliefs | B

Figure 1: Limitations Caused by Incomplete Domain Knowledge in a Planner.

failures. Missing primary effects. operators. or data about the state may cause
that some problems have no solution (even though they would be solvable if

the complete domain were available to the planner).

3 Incremental Refinement of Planning Domains
through Experimentation

When users define operators for a planning system. the resulting operators
turn out to be operational for planning (i.e., the planner has some model of
the actions that it can use to build plans) but are incomplete in that users often
forget to include unusual preconditions or side effects. This section presents
onr approach to the problem of refining planning domains thet are incomplete
because they are missing eperator’s preconditions and effects. More details

can be found in [Gil, 1992: Gil. 1991a: Carbonell and Gil. 1990}.

3.1 Detection of an Imperfection

A planner’s ability to interact with its environment allows the detection of
knowledge fanlts. EXPO monitors the external world selectively and contin-
nously. Before the execution of an operator. EXPO expects the operator’s
known preconditions to be satisfied, so it checks them in the external world.
If they are indeed satisfied. then EXPQO execcutes the corresponding action.

The operator’s known effects are now expected to have occurred in the world.

s0 EXPO checks them in the internal world. Auyv time that the observations
disagree with the expectations. EXPO signals an imperfection and learning

triggered.

3.2 Operator Refinement

EXPO uses the Operator Refinement Method [Carbonell and Gil. 1990] to

learn new preconditions and effects of operators. We briefly describe now the

implementation of this method in EXPO.
Acquiring New Precongitions

\When an operator O executed in state S has an unpredicted outcome. EXPO
considers the working hypothesis that the preconditions of O are incomplete
and triggers learning to find out the missing condition (", (" must have heen
true (by coincidence) every time that O was executed before. EXPO keeps
track of every state in which each operator is executed. It looks up So. a
generalization of all the states in which O was successfully executed in the
past.! All the predicates in So are considered potential preconditions of O.
(Notice that the currently known preconditions of O must be in S5p). EXPO
then engages an experimentation process to discern which of those predicates
is the missing condition.

Because of the bias needed in the generalization of S, the nissing condi-
tion may not appear in So. If this is the case, none of the experiments would
be snccessful. EXPO then would retrieve any successful past application of
(). Sque, and builds a new set of candidate preconditions with the differences
hetween S and S;,... If experimentation is not successful in this stage. the
current implementation of EXPO prompts the user for help. Ideally. it would
lbok for additional candidates (for example. predicates that are not included
in the state S becanse they were never observed). and even consider the alter-

Ulhe generalization of states is done through the opetator’s hindings and uses a version
space framework,

native working hypothesis that O has conditional effects (instead of missing a
precondition).

Previous work on refinement of left-hand sides (LHS) of rules has used the
concept learning paradigm in considering each LHS as a generalization of states
where the rule is applicable {Mitchell. 1978; Mitchell et al.. 1983: Langley.
1987]. However, EXPQO uses this paradigm as a heuristic that guides the
search for a new condition. and not as a basis for finding it. EXPO uses

other heuristics to make the experimentation process more efficient. This is

described in detail in [Gil. 1991a: Gil, 1992].
Acquiring New Effects

When a predicate P is found to have an unpredicted value. EXPO considers
the working hypothesis that some operator that was applied since the last
time P was observed had the unknown effect of changing P. EXPO retrieves
all operators executed since then, and considers them candidates for having
incomplete effects. Experiments with each operator monitoring P closely yield

the incomplete operator.

3.3 Summary

Figure 2 summarizes learning by experimentation in EXPO. EXPO triggers
learning when something unpredicted happens. and focuses on experiments
that find the missing information that vields the correct prediction. Exper-
imentation is task-directed: always engaged within a particular context that
sets specific aims and purpose for what is to be learned. Sece [Gil. 1991a: Gil.

1992] for more particulars on the experiments themselves.
4 Empirical Results

This section contains results that show the effectiveness of ENPO. e, that
it can indeed be used to acquire new knowledge that is useful to the problem

solver.

what ts working candidales state before operator in vhservations

noticed hypothesis experiment erpersmen! | in erperiment
before | after |

unreliable | O is missing Predicates P Preconditions 0 -- effects |

outcome | some condition | that were true | of O and of O

of O in previous some F; are

executions of O | satisfied

unreliable | P is an Operators U Preconditions 0O, P P

belief eflect of some executed since | of some O;

of P operator last time P are satisfied

was observed

Figure 2: Learning by Experimentation.

The results presented in this section show EXPO learning in two different

domains: a robot planning domain and a complex process planning domain.

The robot planning domain is an extension of the one used by STRIPS that has

been used in other learning research in PRODIGY (sce [Carbonell et al.. 1991}

for references). The process planning domain contains a large body of knowl-

edge about the operations necessary to machine and finish metal parts [Gil.

[991b], and was chosen because of its large size. The domains are compared

along some dimensions in Figure 3. [Gil. 1992] describes them in detail.

|

l robot planning ’ process pl(mnind

number of rules I 14 120
average number of preconditions 1 3
average number of effects 4 6
number of predicates 11 93
number of object types 4 33

Figure 3: The robot planning and the process planning domains.

We want to control the degree of incompleteness of a domain in the tests.

We have available a complete domain D which has all the operators with all

their correspouding conditions and effects. With this complete domain. we

can artificially produce domains 1)’ that have certain percentage of incom-

pleteness (i.e.. 209 of the preconditions are missing) by randomly removing

10

7

precao 10 denote a domain that is

preconditions or effects from D. We will use D

’
post2

incomplete and is missing 20% of the conditions. D} _,,, is a domain missing
20% of the postconditions. Notice that EXPO never has access to D, only to
some incomplete domain D’.

EXPO learns new conditions and effects of incomplete operators. \What
is a good measure of the amount of new knowledge acquired by EXPO 1in
each case? Missing preconditions may cause action execution failures. To
show that EXPO is effectively learning new preconditions. we run the test
set several times during training. We compared the cumulative number of
wrong predictions during training with the number of problems in the test
set that could be executed successfully to completion. Missing effects may
cause wrong predictions of literals. We compared the cumulative number of
incorrect literals found during training with the number of incorrect literals
i the final state of the problems in the test set. [LEach wrong prediction
encountered during training, is an opportunity for learning. At certain points
during learning, we run the test set. Learning is turned off at test time, so
when a wrong prediction is found the internal state is corrected to reflect the
observations but no learning occurs.

Training set and test set were generated randomly. and thev were indepen-

dent in all cases.

4.1 Results

Figures 4{a) and 5(a) show the number of action execution failures that EXPO
detects during training with D} ., and D, 5, respectively in the robot plan-
ning domain. Figures 4(b) and 3(b) show how many solutions for problems in
the test set were successfully executed with D, ,, and D 5, respectively.
The number of plans that PRODIGY is able to execute correctly increases with
learning.

The maximnm number of unexpected action ontcomes. indicated by the up-

11

Unexpected Acticn Qutcomes

2 il D] 30 L1 %2 (54
Training Probleow

(a) Cumulative number of unexpected action outcomes during training

12

A

Execut ed

cesslully

Plans Suu

0 M 20 hiM 4 <3 ©d
Training Probiems

(b) Number of plans successfully executed in the test set

Figure 4: Effectiveness of EXPO in the robot planning domain with 20%
of the preconditions missing (D},..,)- (a) Cumulative number of unexpected
action outcomes in the execution of solutions to training problems encountered
by EXPO as the size of the training set increases. Each one presents an
opportunity for learning. (b) The number of plans successfully executed in the
test set increases as EXPQO learns. The number of additional plans successfully
executed is indicative of the amount of preconditions acquired by EXPO.

per limit of the y-axis, corresponds to learning all the missing preconditions.
For D;_,.,0, notice that although EXPO does not acquire all the missing do-
main knowledge, it has learned the knowledge necessary to execute successfully
the solutions to all the problems in the test set. In fact. after training with 40
problems EXPO can solve all the problems in the test set. Even thongh EXPO

learns new conditions with further training they do not cause anyv improvement

’

in the performance. For D7 __ ;.

very few solutions to the test problems are

executed successfully in one case. This is because the situations encountered

12

g 25 1
0
3 20
3 .
5 et
s L A -
< Ko
n
v 10 i
4 ‘o
v .
o d
x -
v S e Train 1 w—
5 i Train 2 ~=-¢
3
¢
[0 29 3o 40 s0 60

Training Problems

(a) Cumulative number of unexpected action outcomes during training

12 —

19

R

Plane Sur-esutully Executed
o
3
>
a

O

[ie 20 3o 40 S0 0
Training Pr~blemg

{b) Number of plans successfully executed in the test set

Figure 5: Effectiveness of EXPO in the robot planning domain with 50% of
the preconditions missing (D, co)-

during training do not cover the situations encountered in the test problems
in that the knowledge needed to solve the test problems is not needed to solve
the training problems. (In fact. after training with the test set one more new
condition is learned which turns out to be common in the test set and thus
the solutions to all the test problems can be successfully executed).

In the process planning domain, the tests were run in domains with 10% and
30% incompleteness using two training sets and two test sets, Figures 6 and 7
present results for D) . o and D) 4, respectively when EXPO acquires new
preconditions. Even though this is a more complex domain. the curves show
results very similar to the results obtained for the robot planning domain.

We also ran tests with domains where postconditions of operators were miss

13

4 Train { =
Train 2 ~==~

Unexpected Action Qutcomes
T
H
‘
:
‘
LN

0 10 20 30 40 S0 60 70 80 9¢ 140
Training Prodlems

(a) Cumulative number of unexpected action outcomes during training

Train 1

Traip 2 ==

Plans Suczessfully kxecuted

0 10 20 3C 40 50 6C T¢ 80 S0 100
Training Problems

(b) Number of plans successfully executed in the test set

Figure 6: Effectiveness of EXPO in the process planning domain with 10% of
the preconditions missing (D, .. o). Two training sets and two test sets were
used.

ing. Figures 8 and 9 show the results for D}, .5 and D, s, respectively in
the robot planning domain. As more incorrect literals are found in the state.
EXPO acquires new effects of operators. Thus. the number of incorrectly

predicted literals when running the test set is reduced continuously.

4.2 Discussion

The new preconditions and postconditions learned through EXPO improve
PRODIGY’s performance by reducing the amount of wrong predictions during
plan execution. The effectiveness of learning is not solely a characteristic of
the learning algorithm: it is heavily dependent on the situations presented

to EXPO during training. If the training problems cover situations that are

1

Unexpec _ed Action Outcomes

S 1

0 10 20 30 40 SG 60 0 80 90 100
Traiming Problems

{a) Cumulative number of unexpected action outcomes during training

-—

Train 2 —~-

Plans Sucvessfully Executed

©o t: e a

i) 10 20 30 &0 50 &0 70 80 90 100
Training Problems

(b) Number of plans successfully executed in the test sei

Figure 7: Effectiveness of EXPO in the process planning domain with 30% of
the preconditions missing (D},,.30). Two training sets and two test sets were
used.

comparable to the ones in the test problems, then learning is more effective.
Notice that this is expected of any learning system.

Another effect of the nature of the training problems is that EXPO rarely ac-
quires all the knowledge that is missing from the domain. However, PRODIGY s
performance is always improved, and in many cases all the test problems can
be executed successfully after learning even though the improved domain may
not be complete. EXPO is becoming increasingly more correct. because learn-
ing is directed to find the missing knowledge needed to solve the task at hand.
Even though an action may have many more conditions and effects than those
currently known, only the ones that are relevant to the current situation are

acquired. LXPO shows that lcarning can improve a system’s performance

a

-]
o
CeR-pogt-20-6.teg: —~—
P4 B

Incorrect Literala

2

Q 10 2g 30 14 $0 64
Training Problems

(a) Cumulative number of incorrect literals found during training

55

50

5

Incortect Literals in Final State
&

o i3 20 30 40 50 0
Training Problems

(b) Incorrect literals in the final state of test problems

Figure 8: Acquisition of new effects in the robot planning domain with 20% of
the effects missing (D,,50). (2) Cumulative number of incorrect literals found
in the internal state during the execution of training problems as the size of
the training set increases. Each one presents an opportunity for learning. (b)
The number of incorrect literals of the final state in the test set decreases as
EXPO learns. This is indicative of the amount of new effects of operators

acquired by EXPO.

and bring it to a point where it can function reasonably well with whatever
knowledge is available. be it a perfect model of the world or not.

Finally, EXPO is a proactive lcarning system. When a fault in the current
knowledge is detected, the information available to the learner may well be
insufficient for overcoming the fanlt. An important component of EXPO’s
learning is the ability to design experiments to gather any additional informa-
tion needed to acquire the missing knowledge. Work on learning theory has

shown that the active participation of the learner in selecting the situations

16

18 1
2 1s

'es~po§c‘§0—-s teg: e
14
12
10 4
8
6 4

Incorrect Literals Fo

[V'S

0 12 20 e ac S0 60
Training Problems

(a) Cumulative number of incorrect literals found during training

60

$5 b
53
39
40
]
30

o5 {

a 12 20 30 40 b1 3]
Training Problems

(b) Incorrect literals in the final state of test problems

Incorr ct Literals in Final State

Figure 9: Acquisition of new effects in the robot planning domain with 50%

of the effects missing (D} ,,50)-

that it is exposed to is an important consideration for the design of cffective

learning systems {Angluin, 1987].
5 Conclusions

Learning from the environment is a necessary capability of autonomous intel-
ligent agents that must solve tasks in the real world. Our approach combines
selective and continuous monitoring of the environment to detect knowledge
faults with directed manipulation through experiments that lead to the miss-
ing knowledge. The results presented in this paper show the effectiveness of
this approach to improve a planner’s prediction accuracy and to reduce the
amount of unreliable action outcomes in several domains through the acquisi-

tion of new preconditions and effects of operators.

17

This work is applicable to a wide range of planning task, but there are some
limitations. The state of the world must be describable with discrete-valued
features, and reliable observations must be available on demand. Actions must
be axiomatizable as deterministic operators in terms of those features.

Our work assumes an initially incomplete knowledge base. TFuture work
is needed to address other types of imperfections, including incompleteness.

incorrectness. and intractability of planning domain knowledge.
Acknowledgments

This research was supported by the Avionics Laboratory, Wright Research and
Development Center, Acronautical Systems Division (AFSC). U.S. Air Force.
Wright-Patterson AFB. Ohio 45133-6543 under Contract F33613-90-C-1.165.
ARPA Order No. 7597. The view and conclusions contained in this document
are those of the author and should not be interpreted as representing the official

policies, either expressed or implied. of DARPA or the U.S. government.
References

Angluin, Dana. 1987. Queries and concept learning. JMachine Learning

2(4):319-342.

Carbonell, Jaime G. and Yolanda Gil. 1990. Learning by experimentation:
The operator refinement method. In Machine Learning, An Artificial In-
telligence Approach. Volume Il1. ed. Y. Kodratoff and R. S. Michalski. San

Mateo, CA: Morgan Kaufmann.

Carbonell. Jaime G., Craig A. Knoblock, and Steven Minton. 1991. PRODIGY:
An integrated architecture for planning and learning. In Architectures for In-

telligence, ed. Kurt VanLehn. Hillsdale. NJ: Lawrence Erlbaum Associates.

Cheng, Peter C-11. 1990. Modciling Scientific Discovery. PhD thesis. The

Open University. Milton Kevnes. England.

I8

Danvluk. Andrea D. 1991. Ezxtraction and Use of Contertual Attributes of
Theory Completion: An [ntegration of Erplanation-Based and Similarity-
Ba:ed Learning. PhD thesis. Columbia University, New York. NY.

Gil. Yolanda. !391. A domain-independent framework for effective experi-
mentation in planning. In Proceedings of the Eight International Workshop

on Machine Leaning. Evanston. IL: Morgan Kaufmann.

Gil. Yolanda. 1991. A Specification of Manufacturing Processes for Planning.
Technical Report CMU-CS-91-179. School of Computer Science. Carnegie

Mellon University.

Gil, Yolanda. 1992. Acquiring Domain Knowledge for Planming by Erperi-
mentation. PhD thesis, Carnegie Mellon University. School of Computer

Science.

Hall. Robert J. 1988. Learning by failure to explain: Using partial explanation

to learn in incomplete or intractable domains. Machine Learning 3(1):45-78.

Hammond. Chris J. 1986. (‘ase-based Planning: An Integrated Theory of
Planning. Learning. and Memory. PhD thesis. Yale University. New Haven.

C'N.

Huffman. Scott B.. Douglas J. Pearson. and John E. Laird. 1992, Correcting
imperfect domain theories: A knowledge-level analysis. In Machine Learn-
ing: Induction. Analogy and Discovery. Boston., MA: Kluman Academice

Press.

Kedar. Smadar T.. John L. Bresina. and C. Lisa Dent. 1991. The blind leading
the blind: Mutual refinement of approximate theories. In Proceedings of the

Fight Machine f.carning Workshop. Evanston. IL.

Langlev, Pat. 1937. A general theory of discrimination learning. In Production

System Models of Learning and Development. Cambridge. MAD MIT Press.

19

Maes. Pattie. 1991. Adaptive action selection. In Proceedings of the Thirtcenth

Annual Conference of the Cognitive Science Soctety. Chicago. L.

Mahadevan, Sridhar and Jonathan Connell. 1992. Automatic programming of
behavior-based robots using reinforcement learning. Artificial Intelligence

55(2-3):311-365.

Minton, Steve, Jaime G. Carbonell, Craig A. Knoblock. Dan R. Kuokka. Oren
Etzioni. and Yolanda Gil. 1989. Explanation-based learning: A problem

solving perspective. Artificial Intelligence 40(1-3):63-1138.

Mitchell. Tom. Paul Uteoff. and Ranan Banerji. 1983, Learning by experi-
mentation: Acquiring and refining problem-solving heuristics. In MWachine
Learning, An Artificial Intelligence Approach. Volume [Palo Alto. CA:

Tioga Press.

Mitchell, Tom M. 1978. Version Spaces: An Approach to Concept Learning.
PhD thesis. Stanford University, Stanford, CA.

Mitchell. Tom M.. Richard M. Keller. and Smadar T. Kedar-('abelli. 1986.

Explanation-based learning: A unifving view. Machine Learning 1(1):47-80.

Rajamoney. Shankar A. 1988, Erplanation-Based Theory Revision: An Ap-
proach to the Problems of Incomplete and Incorrect Theories. PhD thesis,

University of lllinois at Urbana-Champaign. Urbana. IL.

Rajamoney. Shankar A. and Gerald F. DeJong. 1987, The classification.
detection, and handling of imperfect theory problems. In Proceedings of
the Tenth International Joint Conference on Artificial Intelligence. Milano.

[taly.

Shen. Wei-Min. 1989, Learning from the Environment Based on Pereepts
and Actions. PhD thesis. School of Computer Science, Carnegie Mellon

University, Pittshurgh. PA.

20

